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Abstract. The idea of parton saturation is reviewed. The use of saturation in describing HERA data is
discussed in the context of the McLerran-Venugopalan and Golec-Biernat Wüsthoff models. Applications
of saturation ideas to RHIC data are reviewed and a comparison between applications at HERA and at
RHIC is given.

PACS. 11.10.-z Field theory

1 Introduction

Partons in hadrons and saturation
The partonic picture of hadrons and the saturation of

partons are not easily seen in the same reference frame.
We shall choose to describe deeply inelastic lepton-hadron
scattering in two distinct frames. One of these frames will
make the parton picture manifest while the other will
make unitarity limits (saturation) manifest.

1.1 The Bjorken frame

In the Bjorken frame one choses the proton momentum to
be large and along the z-axis while the momentum of the
virtual photon is mainly in the transverse direction

Pµ = (p +
m2

2p
, 0, 0, p) , (1)

qµ = (q0, q⊥, 0) . (2)

As p → ∞, q0 = q·P
p → 0. The invariants usually chosen

to describe the process are −qµq
µ = Q2 � q2

⊥ and x =
Q2

2P ·q and this latter variable serves to label the momentum
fraction, of the original proton momentum P, carried by
the struck quark. The process is illustrated in fig. 1.

The virtual photon is absorbed over a length scale
∆x⊥ � 1/q⊥ = 1/Q and during a time ∆t = (Ek + Eq −
Ek+q)−1 � 1/Q. The time of absorption and the region
of absorption in the proton are so small, for large Q, that
the absorption must take place on single quarks or anti-
quarks in the wave function of the proton. This makes the
following formula natural:

F2(x,Q2) =
∑

f

e2
f [xqf (x,Q2) + xq̄f (x,Q2)] , (3)

P

q

k = x P + k⊥

k + q = l

γ ∗

Fig. 1.

where qf and q̄f are the quark and antiquark number den-
sities in the proton, and ef is the quark charge as a fraction
of the charge of the proton.

1.2 The dipole frame

The Bjorken frame shows deep inelastic scattering in
terms of the quark components of the infinite-momentum
wave function of the proton. There is an alternate view
where one still gives the proton a large momentum but
where now the γ∗ also has a sufficiently large longitudinal
momentum so that the process can be viewed as γ∗ → qq̄
and then the qq̄ dipole scatters on a highly developed wave
function of the proton as illustrated in fig. 2. The momenta
can be given as

P = (p +
m2

2p
, 0, 0, p) , (4)

q = (
√

q2 −Q2, 0, 0, q) , (5)
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Fig. 2.

where q/Q > 1 but not too large. QCD evolution is still
in the proton. We shall see below that parton scattering
corresponds to the unitarity limit of dipole scattering on
the proton.

2 Simple models of saturation in nuclei

It is simplest to illustrate saturation in deep inelastic scat-
tering by using a large nucleus to create large quark and
gluon number densities. Most of what occurs in a large
nucleus can be taken over to protons where it is BFKL
evolution which there creates large parton densities.

2.1 Quark saturation

We are going to calculate dx(q+q̄)
d2bd2
⊥

, the sea quark distri-
bution of light quarks per unit of transverse phase space
in the nuclear wave function [1]. One can view the cross-
section for producing a quark jet either as in fig. 1, where
the partonic interpretation is clear, or as in fig. 2, where
the scattering of the dipole on a large nucleus can be done
in the multiple scattering approximation. In this latter
picture one easily finds [1]

dx(qf + q̄f )
d2bd2�⊥

=
∫

d2x1d2x2e
−i
⊥·(x1⊥−x2⊥)

×
∫ 1

0

dz
{
Q2Nc

32π6
[z2 + (1 − z2)]

×∇x1K0

(√
Q2x2

1⊥z(1 − z)
)

×∇x2K0

(√
Q2x2

2⊥z(1 − z)
)}

×
[
1 + e−(x1⊥−x2⊥)2Q̄2

s/4 − e−x2
1⊥Q̄2

s/4

−e−x2
2⊥Q̄2

s/4
]
, (6)

where
Q̄2

s =
CF

CA
Q2

s = 4/9Q2
s (7)

classical field

x
k

⊥
⊥ ,kz

. . .

Fig. 3.

and

Q2
s =

4π2αNc

N2
c − 1

2
√

R2 − b2 ρxG. (8)

In (6) x1⊥ is the transverse coordinate of the measured
quark in the amplitude and x2⊥ is the corresponding co-
ordinate in the complex conjugate amplitude. The term
{} in (6) is 1

8π2ψ
∗
γ(x2⊥)ψγ(x1⊥); ρ is the nuclear density;

xG is the gluon density of a nucleon, and b is the im-
pact parameter of the nucleus. The four terms in [ ] in
(6) correspond to no interactions, an arbitrary number of
interactions in the amplitude and in the complex conju-
gate amplitude, an arbitrary number of interactions in the
amplitude with no interactions in the complex conjugate
amplitude, and an arbitrary number of interactions in the
complex conjugate amplitude with none in the amplitude,
respectively. Thus, for example, the third term

S(x1⊥, b) = ēx2
1⊥Q2

s(b)/4 (9)

is the S-matrix for the interaction of a dipole of size x1⊥
with the nucleus at impact parameter b. Unitarity is im-
posed by the fact that |S| ≤ 1 and S → 0 for large x2

1⊥.
Saturation show up when �2⊥/Q

2
s � 1 in which case

(6) gives [1]
d2x(qf + q̄f )

d2bd2�⊥
=

Nc

2π4
(10)

a remarkable result which says that the number of quarks
in the nucleus cannot grow too big in a given region of
phase space. This can be turned (approximately) into a
3-dimensional occupation number:

fq =
(2π)3

2 · 2 ·Nc

dx(qf + q̄f )
d2bd2�⊥

=
1
π
, (11)

where the two factors of 2 in the denominator count par-
ticle and antiparticle and spin factors.

2.2 Gluon saturation (McLerran-Venugopalan
model) [2]

Quark saturation occurs at the one fermionic loop level
and is purely a quantum phenomenon. Gluon saturation,
on the other hand, occurs at the semiclassical level and for
a large nucleus corresponds to graphs like those shown in
fig. 3 in the Bjorken frame and in a particular light-cone
gauge [3]. One finds [4,5]

dxG
d2bd2�⊥

=
N2

c − 1
4π4αNc

∫
d2x⊥
x2
⊥

e−i
⊥·x⊥
(
1 − e−x2

⊥Q2
s/4

)
.

(12)



A.H. Mueller: Saturation in small-x and heavy-ion physics 529

When �2⊥/Q
2
s  1 the additive result is recovered while

for �2⊥/Q
2
s � 1

dxG
d2bd2�⊥

=
N2

c − 1
4π3

ln(Q2
s/�

2
⊥) (13)

or

fg =
(2π)3

2(N2
c − 1)

d2xG

d2bd2�⊥
=

1
αNc

ln(Q2
s/�

2
⊥). (14)

Now occupation numbers are of order 1/α which signals a
strongly nonlinear classical field theory. Higher orders will
likely modify the constants in (13), but the general form,
including lnQ2

s/�
2
⊥, are expected to be general [1,6–8].

3 Application to HERA phenomenology

Refer back to (6) which can be written as

dx(qf + q̄f )
d2bd2�⊥

=
1

8π2

∫
d2x,d2x2

∫ 1

0

dze−i
·(x1−x2)

×ψ∗
γ(x1⊥, z,Q)ψγ(x2, z,Q)

×
[
1 + e−(x1⊥−x2⊥)2Q̄2

s/4 − e−x2
1⊥Q̄2

s/4 − e−x2
2⊥Q̄2

s/4
]
,(15)

again for a large nucleus. If we integrate over d2�⊥ and
d2b with the replacement d2b → σ0 on the right-hand side
of (15), one obtains

F2(x,Q2) = σ0

∫ ∑
f

e2
fd2x⊥

×
∫ 1

0

dz|ψγ(x⊥, z,Q)|2
(
1 − e−x2

⊥Q2
s/4

)
.(16)

Taking this form for a proton gives the Golec-Biernal–
Wüsthoff model [9]. For diffractive scattering

FD
2 = σ0

∫ ∑
f

e2
fd2x⊥

∫ 1

0

dz|ψγ |2

×1
2

(
1 − e−x2

⊥Q2
s/4

)2

+ qq̄g state. (17)

The Golec-Biernat–Wüsthoff model has just three param-
eters

σ0 = 23mb, Q̄2
s = (

x0

x
)0.3 GeV2, x0 = 3×10−4. (18)

In general the exponential form for the S-matrix as given
in (9) cannot be expected to work for protons in de-
tail. However, the general characteristics S −→

x⊥→0
1 and

S −→
x⊥→large

0 as well as the fact that the corrections to 1−S

are of order x2
⊥ at small x⊥ are general results which are

nicely built into the Golec-Biernat–Wüsthoff model.
The Golec-Biernal–Wüsthoff model works surprisingly

for fits to F2 and FD
2 at HERA. There are also now many

variations on the model [10–12] which try to reflect more
precisely QCD constraints.

4 Application to heavy-ion phenomenology

Once densities of produced quarks and gluons in heavy-ion
collisions are large enough to be in the quark-gluon phase
it does not make sense to try and describe the collision
in terms of hadrons. On the other hand, QCD perturba-
tion theory may not give reliable numerical results, but it
should be a reasonably accurate guide to the production
and early stages of a heavy-ion collision.

4.1 The production of gluons

In a head-on heavy-ion collision production in the cen-
tral rapidity region should be dominated by gluons [13]. It
is convenient to view the collision as a right-moving col-
lection of gluons, the wave function of the right-moving
nucleus, colliding with a stationary nucleus. Then the pri-
mary effect of the collision is to free all the right-moving
gluons whose transvese momentum is below the saturation
momentum [13].

To try and get some reasonable estimates, we use the
McLerran-Venugopalan model as a model for the gluons
in the right-moving nucleus. This gives the gluons in the
wave function according to (12) above. Just after the colli-
sion we suppose that a good fraction of the gluons having
�⊥/Qs < 1 have been liberated. Thus we write for the
initial gluon distribution produced in the collision

dNg

d2bdη
= c

N2
c − 1

4π2αNc
Q2

s , (19)

where c accounts for the fact that not all gluons may be
freed in the collision.

Krasnitz and Venugopalan [14] and Krasnitz, Nara and
Venugopalan [15] calculate dNg

d2bdη numerically using clas-
sical Yang-Mills field equations starting from McLerran-
Venugopalan wave functions for the colliding nuclei. They
find

dNg

d2bdη
=

1
g2

fNΛ2
s , (20)

where 1
4πΛ

2
s lnQ2

s/Λ
2
QCD = Q2

s. One gets [16]

c =
4π2fN

(N2
c − 1) lnQ2

s/Λ
2
QCD

� 1
2

(21)

for the calculated value, fN � 0.3.

4.2 The production of charged hadrons

Now take (19), integrate over d2b and include a factor
of R to account for gluon inelasticity as the gluon system
evolves toward equilibrium and also include a factor of 2/3
to account for the fraction of produced particles, mostly
pions, which are charged. One gets

dNch

dη
=

2
3
Rc

N2
c − 1

4π2αNc

∫
d2bQ2

s. (22)
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Using (8) along with xG � 1
2 lnQ2

s/Λ
2
QCD, one finds [17]

2
Npart

dNch

dη
=

Rc

3
lnQ2

s/Λ
2
QCD , (23)

where the number of participants in the reaction is

Npart = 2A = 2
∫

d2bρ2
√

R2 − b2. (24)

We shall now use (23) to help summarize various, closely
related, approaches to charged-particle production at
RHIC.

4.2.1 Kharzeev, Nardi and Kharzeev, Levin, Nardi
picture [17–19]

Here one supposes R = 1. Using the experimental value
2

Npart

dNch
dη � 3.8 at

√
s = 200, one sees from (23) that

one needs c � 2.5− 3 for Q2
s = 1− 2GeV2. The centrality

dependence and energy dependence come out well in this
model as well as the η-dependence.

4.2.2 Krasnitz, Nara, Venugopalan model [14,15]

This model is close to that of Kharzeev et al. The authors
take McLerran-Venugopalan initial conditions and solve
classical Yang-Mills equations to determine the number of
gluons radiated during an ion-ion collision. They deter-
mine as initial conditions for the freed gluons

dNg

d2bdη
=

1
g2

fNΛ2
s with fN � 0.3 (25)

and

〈Eg
T 〉 �

3
2
Λs. (26)

One gets (23) for Λs � 1.1− 1.3GeV and with R � 2–2.5.

4.2.3 “Bottom-up” picture [16]

The “bottom-up” picture uses the Boltzman equation,
and especially the inelastic collision term in the Boltzmnn
equation, to follow the initially freed gluons, coming from
a McLerran-Venugopalan distribution, to the time of equi-
libration. In this picture (23) also emerges. If c � 1 and
R � 3, one finds that equilibration occurs at a time � 3.5
fm and at a temperature Teq � 230MeV.

4.3 Problems with the models

Although saturation models give results which are gener-
ally compatible with the early RHIC results there are a few
difficulties which particular versions of the model have.

i) Kharzeev et al. need a value of c which is much larger
than the value obtained from numerical calculation.

ii) In order to fit the RHIC data Krasnitz, Nara and
Venugopalan take Λ2

s � 1–1.5 GeV2, while the McLerran-
Venugopalan model gives

Λ2
s � 1

2
GeV2 .

iii) Baier et al. need c � 1, while the calculations give
c ≤ 1/2. Also analytic calculations are dangerous when
Q2

s is as small as 1GeV2.
iv) The Golec-Biernat–Wüsthoff model gives

Q2
s =

(
3x10−4

x

)0.3

· Nc

CF
(27)

for protons. At x = 10−2 this gives Q2
s � 0.8GeV2, while

the McLerran-Venugopalan model gives about the same
value for gold at x = 10−2. The values of Q2

s do not match
too well between RHIC and HERA.

This work has been supported in part by the Department of
Energy, Columbia University, New York.
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